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1. INTRODUCTION

The fundsmental, practically the most important brench of the modern
mechanics of a viscous fluid or a gas, is that branch which concerns it--
self with the study of the boundary layer. The presence of a boundary .

layer accounts for the origin of the resistance snd Mft force, the
breakdown of the smooth flow about bodies, and other phenomena that are
associated with the motion of a body in a real fluid. The concept of
boundary layer was clearly formulated by the founder of aerodynamics,
N. E. Joukowsky, in his well-known work “On the Fo~ of Ships”l published
as early as 1890. In his book “Theoretical Foundations of Air Navigation,”
Joukowsky gave an account of’the most Important properties of the bound-

●
ary layer and pinted out the part played by it in the production of the
resistance of bodies to motion. The fundamental differential equations

● of the motion of a fluid in a hminsr boundary layer were given by Prandtl
in 1904j the first solutions of these equations date from 1907 to 1910.
As regsrds the turbulent boundary layer, there does not exist even ta
this day any rigorous-formulation of this problem because there is no
closed system of equations for the turbulent motion of a fluid.

Soviet scientists have done much toward developing a general theory
of the boundary layer, and in that branch of the theory which is of greatest
practical importance at the present time, namely the study of the boundary
layer at large velocities of the body in a compressed gas, the efforts of
the scientists of our country have borne fruit in the creation of a new
theory which leaves fsr behind all that has been done previously in this
direction. We shall herein enumerate the most important results by Sovtet
scientists in the development of the theory of the boundary layer.

*“pogrtic@i Slc)i.” Mechanics in the U.S.S.R. over Thirty YearS,
1917-1947, pp. 300-320.

lJoukowsky, N. E.: O forme sudov. Trudy Otdeleniya fizicheskikh
nauk Obshchestva lyubitelei estestvoznsmia, 1890. (See also N. E.

.
Joukowsky, Collected Works. Vol. II. Gostekhizdat, 1949, pp. 627-639.)

.
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2. LAMINAR BOUNDARY IAYZR FOR CM.SEOF PLANE-PARALLEL MOTION

OF INCOMPRESSIBLE.FLUID K

The solution of the problem”of the motion of-m- incompressible fluid .
in the stationary lsminar boundary layer reduces, as”is known, to the
obtaining of integrals of a nonlinear system of partial differential
equations:

au au a%%v-
‘x+v&=udx ay2

1 (2.1)

where the unknown functions u(x,y) and Vfxjy) are the velocity com-
ponents along and normal to the surface of-the’body at the points of the
boundsry layer, U(x) is the initially given longitudi~al velocity com-
ponent on the outer boundary of the bound=_y layer, x. and y are the
coordinates along and normal to the surface of the contourj sad v * p/p
is the kinematic-
the problem have

coefficient of viscosity. The boundary conditions of
the form

U=o,v=o for y==O
1

u+U(X) for y + m J
(2.2) k

.

where at times there is the further requirement of satisfying a given
distribution of velocities u= ~(y) at the initial section of the
layer X?X().

The conditions of existence and uniqueness of solutions of equations
(2.1) have been considered by N. S. Piskunov (ref. 46). I

The question of an effective method for solving &quati.ons(2.1) for
an arbitrary given function U(x) has not yet been answered. The existing
exact solutions of the system of equations (2.1) for boundary conditions
(eq. (2.2)) refer only to certain special classes of finctions U(x) as,
for example, a linear function, a monomial.to some power, certain very
simple exponential combinations, and so forth.

The application of purely numerical.devices is @“ of great use be-
cause what is of fundamental importance is the possibi~ity.of taking +nto
account the effect of the form of the pressti’edistribution on the motion
in the boundary layer and not the accurate determination of the unknown
velocity components in a given special case. This Is yhy from about 1921 “
extensive use was made of approximate-methodsfor computing the laminar
boundary layer that were based on the application of the general integral -

1
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theorems of the mech,tics of a fluid, especially the momentum theorem.
The methods of K&man and Pohlhausen are primarily methods belonging tob
this CkSS.

.-

By applying the momentum theorem to an element of the boundary
layer, bound by the normal sections of the layer at the points x and
x + dx and the outer boundsxy of the layer y = 8(x), where the function .._
5(x) is conventionally assumed finite even though actually the effect of
the viscosity extends asymptotically to infinity, there may be obtained
the simple integral condition

(2.3)

where the prime denotes differentiation with respect to x. (This equa-
tion may also be derived strictly from equations (2.1) by employing the
accurate boundary conditions (eq. (2.2)). The two conventional boundsry-
layer thiclmesses 5*(x) and 5-(x) are defined by the integrals .-

.
denoted, respectively, as the displacement thickness and loss of momentum _____
thickness, while the msgnitude Tw defined by the equation

au()‘w=~— by po

represents the frictional stress on the surface of the body; the symbols
5 and co in the upper limit of the integral denote the possibility of
employing either the theory of the boundary layer of finite thickmess or
the asymptotic theory.

Suppose we are given, in a boundary-layer section, the distribution
of the velocities expressed in the form of a polynomial of the fourth
degree with respect to the nondimensional coordinate q= y~~c with
coefficients which are functions of x. Then, by satisfying the
conditions

—

a2u UUI

‘=o’w =-~
for y=O

au
U=u,

h
for y =“b

}

(2.5)



4

the polynomial
form

where

This magnitude,
of the group of
profiles in the
termed the form

NACA TM 1400

t
approximating the velocity distribution–may be given the

u
–= (p(~,A)= 2~ - 273 -i-# ++ Aq(l - q)su (2.6) -

(2.7}

which is a function of x, plays the p@ of a parameter c

cuxves (eq. (2.6)) determhing the form of the velocity t
G

sections of the boundary layer and’is, therefore, often
parameter.

The
equation

where we

momentum equation (2.3] may be expressed in the form of an
for the determination of k as a function of. x:

must put (ref. 35)

with the notation

(2.8)

(2.9)

For the given form (eq. (2.6]) of the function (p(q,k)the magnitudes
(eqs. (2.9)) are functions of the parameter .X,and equation (2.8) is a
nonlinear ordinary differential equation of the second order for the
determination of X as a function of x. By solving this equation for
the initial condition x = O, k= ~, where ~ is determined from the
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condition that the right-hand side of equation (2.8) is finite at the
critical point x = 0, we obtain A(x), and hence, by equation (2.7),

w b(x) also. Then there is no difficulty in computing the magnitudes
5*, ~%+, ~d TW whereby the problem is solved.

The abscissa of the point of separation is determined from the
condition

the
This briefly is the Pohlhausen method for
equations of the lsminar boundary layer.

approximately Solting

Notwithstanding the roughness snd small justification of the assump-
tions, this method,-as numerous computations have shown, has proven
itself entirely satisfactory in the-region of negative and small positive
longitudinal pressure gradients in the boundary layer, but entirely un-
suitable in the sfterpart of the layer in the presence of a pressure
rise sufficiently steep to be accompanied by separation of the loundary
layer from the surface of the airfoil. In addition to this deficiency
in principle, the method ceased to be of service, sllsofrom the point of
view of practical application, since for solving the fundamental non-

4 linear differential equation (2.8)) it req~red the use of complicated
graphicsl or analytical computing devices.

. A whole series of Soviet investigations may be cited that were con-
cerned with the simplification of the practical application of the above .
method. Thus, A. P. Melnikov (ref. 41) worked out a method for the
numerical integration of the fundamental equation instead of its graph-
ical solution. K. K. Fedyaevskii (ref. 54} showed the possibility of
the approximate linearization of this equation and the consequent re-
duction of the solution for simple quadrature. A. A. Kbsmodemyanskii
(ref. 19) substituted for the approximating polynomial (eq. (1.6)) the
product of a polynomial of the second degree by a trigonometric function
and applied the method of successive approximations to solve the differ-
ential equation thus obtained.

A. N. Alexandrov (ref. 2][NACA note: Ref. 2 in tmn ref~s to
NACA Rep. 527, “Air Flow in a Separating Lsminar Boundsry Layer” by G. B.
Schubauer, 1935.] worked out a numerical method for integrating equation
(2.8), maintaining the velocity profile (eq. (2.6)] in the convergent
part of the layer, but for the diffuser part constructing a new polynomial
satisfying the boundary conditions obtained from equation (2.5) by adding

a new exact condition d3u/d~ = O for Y= O ~d ~oPPi~ the old.

condition d%/d# = O for y= 5. TMs device gave good Weement of
the computation with experiment for the case of the flow about an

b

—
___

—

-.

—

.-
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ellipticsJ cylinder at different angles of attack, whereas the old method
led to a result which contradicted experiments findings, namely the
absence of separation in the after region of an elliptic cylinder with
ratio of axes 2.96 to 1 and zero angle of attack.

The method of Alexandrov does not, howeve~, rest on-a sufficiently
well-founded theoretical basis smd possesses little accfiacy, being,
moreover, extremely complicated computationally, the method was not able
to satisfy the increasing demands for a suitable computation of the
boundary layer. In the esrly part of 1941 the~e appeare~ in the U.S.S.R.” ‘-
new, very much more accurate methods based on simple theoretical consid-
erations and, in addition, very suitable for practical application.

L. G. Loitsianskii (ref. 35) introduced the following two functions
of the form psrsmeter (k):

(2.10]

The functions g(k) and k(X) entering equation (2.8] are expressed in
terms of them as follows: —

Equation (2.8) can then be reduced to the form

that is, to a
if the system

~=~F(f)+$f (2.11)

differential equation determining f as a function of x

of equations (2.10) is regarded
between F and f through-the parameter 1.
excluded from consideration and replaced by a
according to equations (2.10) and (2.9):

f = U,5X+$2
v

as a psrame-t”ricrelation
The parameter k is thus

new form psrameter f,

(2.12)

The fbrm parameter f has the principal advsmtage as compsred tith the
psrameter X because it does not contain the conventional nonphysical
magnitude 5 and is equally applicable to the Utheoryof the layer u:
finite thickness as well as to the more strict asymptotic theory. As
will be explained
other advantages.

below, this form parameter has in-addition a number of

.

.
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The problem is thus reduced to that of determining once snd for all
the functional relations

F = F(f), 1

(2.13)

after which, by solving equation (2.11), it is possible to find succes-
sively f(x), then by equation

[
2.12) to find 5M(x), by the third part

of equations (2.13) to find ‘CWx), and finally, if requiredJ by the

second part of equation (2.13) to find 8*(x). All these magnitudes sre
encountered in the study of the flow about bodies and their resistance.

..—

To establish equation (2.13), it is possible, for example, to make
use of the following one-parsmeter approximation of the velocity profiles
in the sections of the boundary layer (ref. 35):

.

+j=l+al(l-q]n +a2(l-~] ‘+1 + a3(l - q]n+2 (2.14)

where the coefficients al, a29 and ~ are

conditions on the surface of the cylindrical

a2u=-uuI a3u=o
u=o,— &2

“ 2

determined from the lmundsry

body:

for y=O (2.15)

and the exponent n, characterizing the degree of contact of the curve
of equation (2.14) with the straight line u = U on the outer boundary
of the layer, is considered as a function of the parmeter Aj that iS9

In contrast to the old methods, it changes in passing from the forward
part of the layer to the rear part. To determine the relation between
n and A, use was made of a class of exact solutions of the equations
of the boundary layer for the case of”a.prescribed velocity of the ex-

ternal flow in the form of a monomial U= c#. With a high degree of
approximation, it was possible to use the simple linear relation
n = 4 + 0.15)L, which gives good agreement of the magnitude of the non-
dimensional friction coefficient ~ computed by the present method, and,
from the aboie-mentioned class of exact solutions, for different ex-
ponents of degree m corresponding to different flows of a fluid in con-
verging and diverging channels.

—

.—

-.
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The sane idea was more consistently carried out in the cooperative
work of N. E. Kochin and L. G. Loitsianskii (ref. 21). Instead of the
family of curves of equation (2.14), they made use of tables of values
of the velocity u(x,y) that were computed with great accuracy for the
class of problems U= c~.

A. M. Basin (ref. 3) proposed employing the family ’ofvelocity pro-
files for the ssme purpose in place of equation (2.14)

satisfying at the point of separation sll the conditions of equation
(2.15) and at the anterior critical point the boundsry conditions of
equation (2.5).

An ingenious solution of the ssme problem,was given by E. E.
Solodkin who showed that it was possible in equation (2.14) to choose a
linear relation between n and X to satisfy approximately, at the
same time, both the equation of momentum and the equation of energy. It
is then no longer necessary to use a class of exact solutions. According
to Solodkin, the relation n= 4 + 0.27 X holds.

—

All previous exsmples give approximate the quantitative results for A

equation (2.13). Omitting in our present review the tables of these
functions and the graphs showing their vsriation, we remark only that
the function F(f) deviates little from the simple linear dependence

9

F(f) = a - bf (2.16)

where the constants a and b have definite initislly computed values
fluctuating within certain limits depending on the device used for deter-
mining the approximating velocity profiles in the sections of the bound-
sxy layer. It is po’ssible,for example, to assume, on the average, the
values a= ().45 and b = 5.7 leading to a deviation of F(f) from the
straight line of equation (2.16) by only a few percent. Because of the
equality equation (2.8), equation (2.3) may be integrated,in quadrature
and the solution has the form

f = aU’

1

Ub-l(g)d~ (2.17)
~

o

If desired, it is possible to take into account the deviation of
the function F(f) from the straight line of equation (2.16) and to intro- ‘-
duce a correction in the solution of equation (2.17) but, as computations
show, there is practically no need for this. From equation (2.17) there
are readily obtained f(x), 5~(x], and so forth. The condition of d
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separation will be f = fs = constant, where this constant likewtse has
. different,values depending on the approximation used; there may be

assumed, for example, fs = - 0.0S5 or other values of f~ close to it.

To compute Zw and 5*, it is necesssry to have recourse to tables for

~(f) and H(f) given in the previously cited references.

The one-parsmeter method described previously is widely applied at
the present time for computing the flow of wing profiles”and other cylin-
drical bodies in a two-dimensional flow. T!kefurther increase in accu-
racy of the method by passing to a lsrge number of parameters and using
the equation of energy (L. S. Leibenzon, ref. 27, and a number of other
authors) is associated with extreme complication, and evidently is not
dictated by necessity, since the use of the single-psrameter method al-
ready gives sufficiently good accuracy for smooth wing profiles.

3. muczuw BOUNDARY LAYER IN PLANE—PARALLEL MOTION

OF INCOMPRESSIBLE FLUID

Depending on the shape of the cylindrical body in the flow, the
condition of its surface, and also the structure of the approach flowl

● the laminar boundary layer turns into a turbulent boundary layer over a
certain small transitions,lregion generally taken to be a paint called
the transition point.. To compute the resistance of the wing and to deter-
mine the character of the flow about it and also, of particular impor-
tance, to estimate correctly the maximum lift force of the wing, it is
essential to be able to predict the position of the transition point.
Much had been done in this direction even before the stat of the wsr by ‘-”
Soviet aerodynamicists. Especially to be noted are the numerous experi-
mental investigations serving as the basis for devising empirical methods
for determining the position of the transition point. Thus, E. M. Mi.nskii
(ref. 43) investigated the effect of the turbulence of the approach flow
and of the longitudind, pressure drop on the transition Toint on the
upper surface of a wing. -.

From the curves presented in the work of Wnskii, it may be seen
very clesrly how the transition point is displaced upstream of the $1OW
with increased turbulence of the flow and also with increase in the angle
of attack of the wing. Similar tests were conducted by Minskii for the
circular cylinder. On the basis of his investigations and numerous tests
of other authors, Minskii proposed a generalized empirical diagram from
which it is possible to determine approximately the position of the tran-
sition point being given certain averaged characteristics of the test.
conditions.

-.

-—

.-

—

.
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Soviet scientists have worked out new experimental devices for deter-
mining the position of the transition point under labo~atory and natural
conditions. N. N. Fomina and E. K. Buchinskaya (ref. 62) have conducted <
an extensive experimental investigation of the boundsry layer on a plate,
a wing, and a body of revolution with the aid of tota&pressure micro-
tubes. The velocity profiles obtained by them ~ermit =Gtimating the
position of the transition point, Similar measurements on the surface
of biangular profiles were conducted by I. L; Povkh (ref. 47). The
investigations carried out in the last 10 years by P. P. Krasilshchikov,
K. K. Fedyaevskii, and others have considerably increased our under-
standing of the part played by transition ph-e.nomenain-the development 8
of the interaction force between the body a“d the fluid (refs. 22, 55,
and 60).

The effect of the above-mentioned factors on the heat transfer of
—

bodies in a fluid flow was investigatedby a-number of authors in the
aerodynamics end thermal physics laboratories of the L&ningrad Poly-
technical Institute (L. G. Loitsianskli, P. I. !lhetyakov,V. A. Shvab;
refs. 40, 68, and 70). On the basis of these investigations concerned
mainly with the intensification of the processes of heat exhange In
steam boilers, an original method was proposed for determining the tur-
bulence of a fluid based on the measurement of the heatigiven off by a
calibrated body, a sphere, depending on the displacement of the line of
transition (thermal scale of turbulence).

In 1944, an extremely simple semi-empirical theory of the transition
of a laminar layer into the turbulent layer was proposed by A. A. Ibrod-
nitsyn and L. G. Loitsianskii (ref. 10). On the basis of the consider-
ation that the principal reason for the transition of the laminsr layer
to the turbulent layer is the occurrence of premature iimtantaneous
local separations of the lsminar boundary layer in the Zegion located
farther upstresm than the point of stationary-separationarising in the
absence of external disturbances, the authors proposed the following
simple formula for determining the abscissa of the transition point:

(3.1]

where T is a certain constant, characteristic of the given flow, and
is determined by the equation

()
2

r .fLti
‘m U’=o

(3.2)

where fg is the
by fs = -0.085.

equation (3.2) is

separation value of the form parsmeter that is given

The expression in parentheses on the right side of
.

computed, once snd for all, for a given aerodynamic
.
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wind tunnel from tests on a plate or other body for which the point of
trsmsition coincides with the point of minimum pressure. This very
approximate semi-empirical theory was sufficiently well confirmed by
numerous Soviet and foreign tests.

The more accurate theory, presented at the end of the paper cited
above, shows that, in fact, the constant y is a function of the non-
dimensional velocity at the transition point. There is also given sm
explicit relation between

3 of the turbulence. It is
‘>
> semi-empirical theory can

large velocities where it
of the compressibility of

the msgnitude y and the intensity and scale
important to note that the previously mentioned
be easily generalized to the case of motion of
is no longer permissible to neglect the effect
the air.

.

.

Let us now turn to the question of the turbulent boundary layer on
a wing profile. The absence of a rational theory of the turbulent
boundsry layer has not up to the present permitted devising a theoret-
ically justified method for its computation. The first solutions of
this problem for the case of the wing profile were based on the utili-
zation in the boundary-layer sections of the velocity distributions
corresponding to a known power law, for example, the 1/7 power lawj de-
rived for the steady motion in a pipe. As is known, power laws have the
fundamental defect that laws of such type sre applicable only within a
certain rsmge of Reynolds numbers.

—

The first investigator to overcome this deficiency was G. A. Gurz-
hienko (ref. 6) who applied a logarithmic velocity distribution not de-
pending on the Reynolds number to the computation of the turbulent
boundsry layer. By making use of a logarithmic form~a for the veti.c-
ities in the sections of the boundary layer, Gurzhienko reduced the
problem to a certain relatively complicated differential equation and
gave a method of integrating it by successive approximations. From its
very nature, this method cannot take into account the effect of a longi-
tudinal pressure gradient on the shape of the velocity pr”ofileand it is
therefore not applicable to those cases where such a gradient is of
importance.

The first attempt to take into account the effect of the longi-
tudinal pressure gradient on the velocity distribution in a turbulent
boundsry layer is that of K. K. Fedyaevskii (ref, 57) who presented a
new theory of the turbulent boundsry layer based on the application of
the idea of “mixing length”.

The proposed law of v=iation of the “mixing length” with the dis-
tance from the wall is the ssme for the boundary layer as for the pipe.
By approximating the iklstributionof the friction stress in a cross
section of the layer by a method analogous to the previously mentioned
device in laminsr motion, Fedyaevskii established the form of the one-
psrsmeter family of velocity profiles in the sections of the layer,
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choosing for the form
longitudinal pressure
the boundary layer to
face of the wing. By
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—.

parsmeter a magnitude “equalto t%e”ratio of the
m

drop over a length eqtiivalentto the thickness of
the friction stress at a given point on the sur- .
generalizing the idea of a lamin-u sublayer for

the case of the presence of a longitudimil.pressure hop and applying
the formula for the velocity to the boundary of the sublayer, Fedyaevski.i
obtained a formula for the resistance after which the equations of the
problem formed a closed system and the solut$on was cfi-riedto the end.

The method of Fedyaevskii was subsequently developed in the direc- W
tion of greater convenience of computation b“yL. E. Kalikhman (ref. 12), $
who also carried out a large number of computations of_the boundsry
layer for different wing profiles and showed--theeffect of the shape of
the profile, the lift coefficient, and other factors on the flow about
the wing.

A somewhat different method was followed by A. P. Melnfkov (refs.
41 and 42). Employing the semi-empirical theory of the turbulent motion
between two parallel walls in which the “mixing length’?is expressed
through the derivatives of the longitudinal velocities along the direc-
tion normal to the surface, Melnikov applied this theory to the boundary
layer and obtained comparatively simple formulas for the one~parameter
fsmily of velocity profiles with the same form parsmeter which figures
in the method of Fedyaevskii. Later Melnikov simplified the method, at
the ssme time, made it more accurate, and confirmed its practical appli-

+

cability by a number of computations.
.*

In the theory of turbulent boundary lsyer, there ia still a third
line of attack considerably more simple from the point of view of its
applications, which, in contrast to the above-mentioned=semi-empirical
methods, might be denoted as empirical. This approach has recently re-
ceifed the greatest development. —.

The underlying basis of all work using the empirical approach is
the employment of the momentum equation, which i.nthe case of the turbu-
lent bound~y layer maintains the same form (eq. (2.3)) as in the case
of the laminar layer. The equation contains essentially three unknown
magnitudes 5*, 5*, snd Tw. In the semi-empirical theories, having

chosen a certain one-parameter family of velocity profiles in the sec-
tions of the layer, the two unknowns 5* and 5- ere expressed In
terms of one unknomi, the thickness of the boundary layer 5 (see eq.
(2.4)); after this there remains only to establish a forgnd.afor the
resistance connecting =W and 8. For this ~ose there is employed
the concept of lsminar sublayer, introduced, strictly sp~&ing, only for-

,,

the case of the absence of.a longitudinal pressure gradient. .

.



NACA TM 1400 H

.

In the investigation using the empirical approach, the family of
velocity profiles in the sections of the boundsry layer remains undeter-

b mined, while the unknown magnitudes 5*, b=, and Zw, or their combi-
nations, are comected by approximate relations obtained from tests or
from certain assumptions of an intuitive character. Thus, for example,
two experimental curves are employed connecting the nondimensional
coefficient of resistmce

and the thickness ratio 5*/5*= H with the form psrsmeter

Instead of using experimental curves connecting the resistance
coefficient and the magnitude H with a certain form parameter, curves
which incidentally are drawn through a very small number of test points
snd refer to the region of small Reynolds numbers, it is possible, on
the basis of certain general assumptions, to construct a method suitable
for computations; the accuracy of this method is found to be entirely

A

sufficient in a number of cases. Thus L. G. Loitsisnskii (ref. 36]
introduced a form parameter r and a reduced resistance coefficient {
according to the formulas.

where G(RH) is a certain function of tk nwber R*. ~~lv d&a-
mined from tests on
formed to the form

plates. In this case, equation (2.3) may’be trans-

dr= U’
dx

~F(r;R~+$r (3.3)

which is entirely smalogous to equation (2.11) for the determination of
the form psrsmeter of the theory of kminar boundary layer. The function
F(rj R=) entering above and given by

F(rj R*)= (l+m]~ - [3 +m+ (l+m)H]T’ (3.4)

is a weak function of R* because the
chiefly through the magnitude m, which.

.

number R- enters into it
is equsl to

w
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Making the simple assumption of similarity of the changes of ~
and H as a function of I’ in the turbulent and laminar (m . 1) bound-
ary layers easily makes the problem completely determinate, and the
functions F(r), ~(r), and E(r), which are the same foF””differentcases
of flow, csm be tabulated. The function “G(RH) may, however, evidently
be well approximated by the empirical formula

1

G{R*) = 153.2RWZ

whence it follows that m = l/6. The function F(r) is-as readily
linearized as in the case of the laminar boundary layer. From equation
(3.3), which becomes linear, the magnitude r“ is determined by simple
quadrature. Computations show satisfactory agreement with test results.
The method may be applied.also for determining the abscissa of the point
of separation, that is, the value x = Xfi foF which $(X6) = ().

.

*

If the turbulent boundary layer is consi~ered “forfie”case of
.-

smooth flow without separation about a wing (small rela~ve thicknesses
and small lift coefficient), it is sufficient in equation (3.4) to put
simply

after which equation
For this very simple

(3.2)[NACA note: Eq. (3.3).] iS

and also important case from the

A

easily integrated.
pd.nt of view of

practical application a somewhat different, but likewise simple, equation, ‘
convenient for solution, was given by L. E. Kslikhmam (ref. ~)~ - -

To the empirical methods based, as in the method above, on the mo-
mentum equation there may be added the method of computing the boundary
layer worked out byL. E. Kalikhman (ref. 14).

In the U.S.S.R., as is seen from the preVious review, a whole
series of original methods of computing the turbulent bo-wdary layer has
been developed. The further development of this important field of
hydrodynamics requires experimental work on turbulent motion in general
and the turbulent boundary layer-in particul~”.

—
—

4. CERTAIN SPECIAL PROBLEMS OF THEORY OF BOUNDARY

LAYER IN INCOMPRESSIBLE FLUID

Parallel to the laminar and turbulent internal friction in the
boundary layer, the processes of heat transfer.occur which are associated ‘
with a similar mechanism and which depend on the distribution of the
temperatures and velocities in the layer. Inv-estigation8along these
lines have been conducted principally in U.S.S.R.

, 5
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G. N. Kkuzhilin (ref. 23), making use of the concept introduced.by
him of a thermal boundary layer of finite thickness, established a
simple integral relation for the heat trsmsfer in a lsminar layer. APPly-
ing a method analogous to that esrlier described.forthe .computatioriof
the laminar layer but in,a more simplified form, “IQmzhil.inreduced the
problem to quadrature and obtained for N=

.—
al~l, R= V@v, and

p s V/a the fo~owi~ gener~ formula which interconnects them:

11

(4.1)

where F(X), a function of the nondimensional coordinate 5= X[l, 1
being an arbitrary scale dimension of the body, is a quadrature depend-
ing on the shape of the bodyj the magnitudes u, k, a, and v are

respectively, equal to
ductivity, the thermal
fluid. In the case of
the form

the coefficients of heat transfer, the heat con-
diffusivity, ad the kinematic viscosity of the
the flow along a plate, equation (4.1] assumes

11
.

AA
N= 0.67@R2 (4.2)- -----

The coefficient entering it differs little from that of the accurate.
solution. Equations (4.1) and (4.2) me derived on the assumption that
the thermal boundary layer is thinner than the velocity boundary layer,
that is, P is greater than 1. The equations retain their form, however,
also for P less than 1 but greater th~ 1/2. In his further studies,
l@uzhilin applied equation (4.1) to the forward part of a circular cyl-
inder (ref. 25) and made a comparison with test data obtained by himself
and V. A. Shvab (ref. 26). The results of the comparison were found to
be entirely satisfactory. In one of his subsequent papers (ref. 24),
KYuzhilin studied the effect of a longitudinal pressure gradient on the
form of the velocity profile in the boundsry layer and slso the genera-
tion of heat arising from the dissipation of energy due to the internal
friction in the rapidly moving fluid in the boundary layer. It should
be remarked that at the time of the appearance of IQuzhilin’s papers
there existed in world literattie individual theoretical investigations
of the heat transfer of bodies in a forced flow but only for the partic-
ular cases of given distribution of the velocities in the outside $>OW
and of the temperatures over the surface of the body =d without account
taken of the generation of heat due to the dissipation of mechanic~ . -
energy.

In the U.S.S.R., the first investigations were carried out in the
field of heat transfer in a turbulent bo~dary layer. V. A. Shvab, in
a theoretical paper (ref. 69) dating from 1936, first gave a solution of
the problem of the heat transfer under the conditioti of the externql ““ -----
problem in the presence of a turbulent boundsry layer in an incompress-”’- . ._
ible fluid. In this paper Shvab mskes use of a well-known smalogy .
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between the turbulent transpmt of momentum aqd heat and, assuming mono-
mials with various powers for the velocity and.temperat~e distribution,
he gave formulas for the heat transfer both for a plate _~d,for a cyl-
indrical body and body of revolution. For P equal to 1, Shvab obtained
an equation connecting the numbers N and R in the form

l+n

N=c”++sn .

—.. . .
where n is the exponent in the assumed distribution of–the velmcitles
in the sections of the boundary layer. With the usual power law rls l/7

0.8there is obtained N - .R. in contrast to the previously mentioned law

N- R*”5 for the lsminar boundary layer. ‘

In a second generalizing paper appeari~ in 1937 (ref.68), Shvab
developed the ideas of the preceding paper, showing how the effect of
the point of transition is.to be taken into account and c~mparing the
results of the computations with experimental data obtained by him, to-
gether with other coworkers, in the aerodynsmic& lehorato~ of the
Leningrad ~lytechni.cal Institute.

K. K. Fedyaevskii (ref. 56) generalized his method of computing the
turbu~ent boundary layer to the case of a thermal boundary layer. MakiM
use of a polynomial representation of the distribution of the heat trans-
port in a section of the layer, he obtained the distribution of the tem-
peratures over the cross section and then a new.integral formula of the
dependence of the local.value of N on P and R (the latter enters
in nonexplicit form through the coefficient of resistance). Comparison
with the results of the tests of A. S. Chashchikhin showed-good agree-
ment of theory with experiment.

Other studies by Soviet investigators in the field of_fprced heat
transfer of bodies in the boundary layer will be-discussed~in the fol-
lowing section devoted to the problems of motion of a gas at large
velocities, a case which is inseparably connected with heat-transfer.

There should be mentioned the investigations of Soviet_scientists
jn the field of free convective heat exchange sxkialso on t–mbulent Jet
zheory in which so much progress has been made principally by the work
of G. N. Abramovich (ref. 1). In these investigations, practical methods
exe given for the computation of turbulent jets both with and without
heat transfer.

Together with turbulent jets, there belongs to the number of prob-
lems of the so-called “theory of-free turbulence’’.also the problem of

.
m

.

—-- -—.

*
the’turbulent motion of a fluid in the aerodynamic wake be~d a body,
that is, in the region of
the body. We may mention

flow formed by the-boun&y layer coming f~om
the interesting experimental “investigations *
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of G. I. Petrov and R.-I. Steinberg (ref.
the question of the effect of the shape of.
the pulsations, of pressure or velocity in

45)
the
the

17 -.

who were concerned with
body on the frequency of
wake behind-the body, and

the work of B. Y. Tr@c.hikov (ref. 49) on the measurement of the temper-
atures in the wake behind a heated body. These investigations led
Truhchikov to establishing a method of measuring the turbulence in wind
tunnels.

In considering the flow about the fuselage of an airplane, the
interference of the fuselage with the wing, the flow near the tips of a
wing of finite span, and also in studying the phenomena”of slip and the
flow about aback-swept wing, it is of great importance at the present
time to study the three-dimensional flows of a liquid or gas in”the
boundary layer.

—

The problem of the three-dimensional boundsxy layer h
general presents great theoretical diffictitiesj the simplest case to
solve is that of the flow with exisl symmetry.

— .

In this field, practical application has been made in the U.S.S.R.
of the method for computing the frictional resistance of bodies of revo-
lution worked out by K. K. Fedyaevskii (ref. 52), based on the applica-
tion of power laws of velocity and resistance with variable exponents.
The first application of the logarithmic velocity profile to the compu-
tation of the boundary layer md the resistance of bodies of revolution*
for the case of sxially symmetric flow about them was made by G. A.

—

Gurzhienko (ref. 6).
.

All new methods of computation of plane lsminsr flow or of the tur-
bulent boundary layer henceforth automatically were carried over to the
case of axially symmetric flow about bodies of revolution. The pre-
sentation of these methods may be found in the preciously cited refer-
ences. An,approximate method of computing the lsminsr boundary layer
smalogous to that described in section 2 is given in a sep~ate payer by
L. G. Loitsismskii (ref. 31).

Turning to a consid=ation of the more difficult problem of the
computation of a three-dimensional boundary layer, we may note first
that L. E. Kslikbman (ref. 16) gave the derivation of the fundamental
integral relations which can serve for the development of approximate
methods of solut”ionof the problem snalogous to those applied in the two-
dimensionsl case. .

In the period from 1936 to 1938, Loitsiamskii published a number of
papers in which, by emplo@ng various approximate devices, he was able

.

.

to solve the following three-dimensional problems:

(1) The laminsr and turbulent motion of a fluid in a boundary
near the line of intersection of two mutually perpendicular
(there was applied the “methodof the finite layer (ref. 29)
the method of the asymptotic layer (ref. 33))

layer
planes
snd
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(2) The analogous problem for planes iriclinedto &ch other by a
certain angle (ref. 38)

.

(3) The lsadnar .boundzErylayer along the line of ‘~tersection “of -
two surfaces (ref. 30)

(4) The laminar boundary layer near the “laterale&e of-a plate iri
an sxial flow (ref. 37)

In these papers new phenomena were revealed by mathematical compu-
tation, the most interesting of which sre: the thlcke_@ng of the bound-
ary layers and the decreasing of the fricti.o.nin the region of juncture
of the planes or surfaces &d, coversely, the.thinning of the boundsry
layer and increase in the friction as the lateral edge_of the plate was
approached. Consequently, there appears the phenomenon of the premature,
as compared with the two-dimensional layer, separation of the boundary
layer near the line of intersection of the surfaces. The latter phenom-
enon, usually aggravated further by the harmful interference of the”
external potential flows, which me as yet no~-subjectfl$ocomputation,
are actually observed in the region where the wing and.@6elage me
joined and in other flows where there is an fitersecticm of surfaces ii”

—

the diffuser region of the layer.

Very recently V. V. Struminskii (ref. 4;] gave a ‘@eory of the a

three-dimensional boundary layer on a cylindrical wing of iofinite span
moving with constant angle of slip. For this purpose h.5applied the
theory of the boundary layer with finite thickness.

*

We now proceed to consider the investigations on the effect of the
roughness of the surface on the boundary layer. The effect of surface
rougmess on the resistance of a body is determined principally by the
ratio of the mean height of the roughness protuberance to the thickness
of the laminar sublayer. The semi-empirical theory of the turbulent
boundary layer near a rough surface was worked out by the combined efforts
of several Soviet specialists. Particularly to be mentioned are a num-
ber of systematic studies conducted by K. K. Fedyaevski~ and his coworker,
N. N.”Fomina. Fedyaevskii (ref. 53) in his early work, dating from 1936,
provided the answer to two fundamental questions of interest to the design-
ing constructed: what is the “permissible” roughness which does not
appreciably increase the resistance of a wing, and what is the effect of
a given over-all roughness on the resistance of’a wing. Later on, csrry-
ing out tests on the resistance of an individual schematized protubermce~
Fedyaevskii and Fomina (ref. 61) sharpened the question.of the Wssibil~tY
of applying the hypothesis of plane flow to the roughness protuberances.
By introducing the notion of the equivalent height of a~oughness pro-
tuberance, the authors gave a table of coilvenflonalheights equivalent to “ ‘-
various wing and fuselage surface roughnesses_that are encountered in
practice. A similar investigation on the roughness of a.ship’s hull was ,
conducted by I. G. Khanovich (ref. 67). He is also to b> credited with
a method for computing the boundary layer on a rough surface in the
presence of a longitudinal pressure drop.

.-—
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An analysis of the parameters determining the resistance of a rough
surface and also the basis for the derivation of the fundamental formulas

● of the velocity distribution were given in a note by L. G. Loitsianskii.
(ref. 34).

The restits of the investigations of our .aerodynsmicistson the
problem of the effect of roughness are widely applied in airplane-con-
struction practice and in work on the analysis of the effect of roughness
on the resistance of ships, on the efficiency of hydraulic turbines (39),
and so forth.

The attention of Soviet investigators was likewise drawn to special
problems on the decrease of the friction due to changes in the physical
constants of the liquid or gas by having the boundsry layer consist of
a liquid or gas differing in its properties from those of the approach -
flow and, also, by heating the surface of the body in the flow. An
interesting experimental investigation of the surface of & body in a
flow was made by K. K. Fedyevskii and E. L. Blokh (ref. 59) who showed
that the coefficient of resistance of a body in an air flow with the
surface of the body heated decreases as the square root of the squares
of the absolute temperatures of the approach flow and the surface of the
body. —

4 The’effect of a boundary layer consisting of a fluid with other
constants was investigated in the theoretical note of L. G. Loitsianskii
(ref. 32) where it was shown that of fundamental importance for reducing

. the resisftsnceis.a decrease of the ratio of the density of the fluid in
.-

the boundary layer to that in the approach flow since this r-atioenters
as a power close to unity, in contrast to the very small influence of
the ratio of the kinematic coefficients of viscosity.

—

Fedyaevskii conducted interesting experiments on the effect of the
aeration of the boundary layer on the resistance of a body moving in
water and showed the practical possibility of decreasing the resistance.
Several general considerations on this subJect may be found in the
theoretical paper (ref. 58) of this author. .=-

In conclusion, we note the investigations of N. A. Zaks (ref. I.1)
on the control of the boundary layer by suction or blow-off of air on
the wing. The theoretical basis of the possibility of obtaining a gain
in the lift force from the application of various methods of control of
the boundary layer and by adding flaps to the wing was first givenby
V. V. Golubev. In his investigations on the theory of the slotted wing -
(ref. 4), Golubev showed that the presence of a forward flap retards
the separation of the boundary layer toward the region of larger angles - —

. of attack than for the wing without flap and, in connection with this
fact, he advanced several general considerations on the structural psram- .-

eters of the wing with flap. Later Golubev (ref. 5) occupied himself.
with the theoretical investigation of other forms of mechanization, in
particular, with the suction and blow-off of the boundary layer.
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5. BOUNDARY LAYER AND RESISTANCE IN

GAS AT LARGE VELOCITIES

NACA TM 1400

COMPRESSIBLE

The investigation of the effect of compressibllit~ of a gas on the
motion in the boundary layer, the resistance and the heat transfer is
the newest branch of the theory of the boundary layer.

The first theoretical study in which a method was given for the
complete computation of the distribution of the velocities and tempera-
tures in a lsminar boundary layer in a compressible gas was the work of
F. I. Frankl (ref. 63). In this paper, I%%nkl generalized the ususl
method of the boundsry layer of finite thickness to the case of a com-
pressible gas. In-his later papers (refs. 6~_to 66) dating from 1935 to
1937, Frankl solved the problem of the heat transfer and friction in the
turbulent boundsry layer on a plate. The latter probl~, as well as the
analogous problem of the lsminar boundary layer, presented serious com-
putational difficulties but the author carrie-dhis investigation far
enough to give quantitative conclusions.

—

An extremely simple approximate theory of the turb~ent friction on
a plate in a compressible fluid flow was givefiby K. K. Fedyevskii and
N. N: Fomina (ref. 61) who showed,that if the usual qu@ratic distribu-
tion formula for the turbulent friction.i.sassumed for the cross sectione .
of a compressible-flowboundary layer, the effect of compressibility on
the resistance of the plate may at first approximation be taken into
account through a change in the physical constants in the boundary layer g

and reduced to the previously mentioned law of the square root of the
squsre of the ratio of the temperatures at the wall to those of the
app~ach flow.

A fundamental step forward in the solution of the problem of the
boundary layer in a compressed gas was the intiestigatioqof A. A.
Ibrodnitsyn (ref. 7) conducted by him even before the wsx but published
only at the beginning of 1942. In this work,”llorodnitsynshowed that at
P equal to “unity,and in the absence of heat transfer, the eystem of
differential equations of motion of a gas in a lsminsr boundary layer
can be reduced to a form differing slightly from the equ>tions of the
boundary layer in sn incompremible gas if we pass from the coordinates
x and y to the new coordinates ~ and q, connected with the old
coordl.natesby the integral relations .—

‘u

where

iceJJ_y
3?00 =d Poo are the pressure fid density in

brought to rest.

(5.1)

the gas adiabat- ‘“
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In the particular
obtained the following

case of the plate in an axial flow, Dorodnitsyn
equation for the resistance coefficient:

2(p~(o}

( )

Ii-l
3

—

“=K ‘+k;1d2

where the magnitude q;(0) represents a certain function, computed by

the “author,of & equal to the ratio of the v&ocity at infinity to
the velocity of sound at infinity, ~= p~VA/~, k= Cpl% 9 and n is

the exponent in the assumed law OY dependence of the coefficient of”
viscosity w on the temperature. .—

The previous transformation (eq. (5.1)) can be successfully applied
also to the turbulent boundary layer if we mske use of the usual aver-
aged equations or the mmentum equation derived from them ad carry over ‘“
the fundamental equations of the semi-empirical theory of turbulence to
a compressible gas. By following this method, ~rodnitsyn (ref. 8]
obtained the equation for the local coefficient of resistance ‘
in the

where

presence of a turbulent houndsry layer over its entire

~= ~-~ ~~[n(~xcf) + q ~(, + ~ ~) +

of a plate
surface

.-

1
0.15

(5.2)

1. A. ICibel(ref. 18] solved the problem of the lsmin= boundsry layer
on a plate for P equal to unity and in the absence of heat transport
across the wall, but with the presence of radiation. At lsrge values
of I& of the approaching flow the plate temperature established in the

presence of radiation was found to be much less than in the absence of
radiation.

By employ5.ng,in a somewhat generalized form, the method of simpli-
fying the fundamental equations given by Ikmodnitsyn, L. E. Kalikhman
(ref. 17) solved the problem of the laminar smd turbulent flow of a com-
pressible gas on a plate h the presence of heat transfer.

The investigations of the boundary layer in a compressible gas on
the wing and on a body of revolution were csrried out principally in
the U.S.S.R. In the work referred to preciously (ref. 8), Dorodnitsyn
considers not only these cases but, employing the trsnsformatioriof
equation (5.1), also solves much more complicated problems. In the “
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general case of a lsminar boundary layer, he applies pr~arily a method
analogous to that described in section 2 of t&i.sreviewj.while, the
turbulent boundtiy layer, he has recourse to the gener~ devices of the .

semi-empirical theory.

To determine the coefficient of profile resistance,..asimple formula
..-

is established serving as a generalization of the well-khown resistance
formula of a body in an incompressible fluid. Dorodnits”~ (ref. 9)
csrried out wide computations of the resistance coefficients of wing
profiles at lsrge velocities and brought to light specific effects of
the compressibility of the air on the resistance coeffic~ents of wing
profiles of vsrious geometric shapes for various conditions of the flow
about them.

The comparative complexity of the method on the one.hand, and the
impossibility of its application to the solution of the ~o~lem of the
separation of the boundary layer, on the other~ made it @cessary to
generalize the method of computing the laminsr boundary ~ayer, described
in section 2 of this review, to the case of the motion of a-compressible
gas with large velocities. A. A. I?orodnitsynfid L. G. lJoitsianskii
(ref. 10) showed that equation (2.3), for P equal to u@ty and in the
absence of heat transfer, may be brought to the form

.

.

where %= v/@ represents ‘he nondimensional ‘e~oci*~ at the ‘Uter
boundary of the layer, in = JCnTnO is the total energy, and the form
parsmeter f has the fo~m

f =

. -.

In the above equation and equation ”(5.3),V’ denotes the@erivative
with respect to x, while the momentum thickness loss 5 is deter-
mined by the formula

q% -$d~
It is of interest to remark that the structure of the.expression

for the function F(f) in terms of ~(f) and H(f)(see seczion2) in _
no way differs from the corresponding expressionin the case of the

.

9
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incompressible fluid. If we make the assumption that, at least for not
too large vslues of &, the functions ~(f) and H(f) willbe the same,
as in the case of the incompressible
functions for ~(f), H(f), ad F(f)
fluid. For a first approximation we
of equation (2.17):

..

f
aV’=

m’
Vbl-a~m

o

flu~d,-we may &nploy the tables of-
computed for the incompressible
obtain the following generalization

where a and b are the ssme constants
tude m is determined by the equation -

km=2+—
k-l

..

(5.4)

as in section 2 and the magni-
.-—

.- —-_
b-—
2

The solution of the problem has thus been reduced, as before, to a
simple quadrature.

.

L. E. Kalikhman (ref. 13) investigated the laminar and turbulent
boundary layers on a wing in two-dimensional flow and on a body of revo-
lution with sxidly symmetric flow for the case of the presence of heat
transfer from the surface of the body. Introducing a transformation of
coordinates representing a generalization of the transformation of
A. A..Dorodnitsyn (eq. (5.1)), Kalikhman constructed the integral rela-
tions of the moments and energiesj then assuming a polynomial distri-
bution of velocities and temperatures in the cross sections of the
boundary layer, he converted these relations into differential equations
relative to several complexes containing the thicknesses of loss of
momentum and energy. The equations are integratedby the method of
successive approximations. In the first approximation, the solution is
represented as a simple quadrature. To solve the analogous problem “for
the turbulent boundary layer, Kalikhmsn applies a semi-empiricsl theory
of turbulence in which he assumes a linear dependence-of the mixing
length on the coordinates. The solution of the fundamental differential
equations in this case likewise lead b quadrature. At the conclusion
of the work an equation is established for the coefficient of profile
resistance serving as a generalization of the formula of Dorodnitsyn for
the case of a body in a compressible gas flow with the presence---ofheat
trsnsfer.

The theory of the boundary layer occupies an important-place in the
Soviet manuals on hydrodynamics (ref. 20) snd constitutes a subsect of
special monographs (ref. 28).

.

.

.—
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